The role of remote sensing data in habitat suitability and connectivity modeling: insights from the cantabrian brown bear.

Ecological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or continent). Alternatively, optical and radar satellite imagery is available with high resolutions, global coverage and frequent revisit intervals. Here, we compared the performance of ecological models trained with free satellite data with models fitted using regionally restricted spatial datasets. We developed brown bear habitat suitability and connectivity models from three datasets with different spatial coverage and accessibility. These datasets comprised (1) a Sentinel-1 and 2 land cover map (global coverage); (2) pan-European vegetation and land cover layers (continental coverage); and (3) LiDAR data and the Forest Map of Spain (national coverage). Results show that Sentinel imagery and pan-European datasets are powerful sources to estimate vegetation variables for habitat and connectivity modeling. However, Sentinel data could be limited for understanding precise habitat–species associations if the derived discrete variables do not distinguish a wide range of vegetation types. Therefore, more effort should be taken to improving the thematic resolution of satellite-derived vegetation variables. Our findings support the application of ecological modeling worldwide and can help select spatial datasets according to their coverage and resolution for habitat suitability and connectivity modeling.

Datos y Recursos

Cite como

Cisneros-Araujo P. Goicolea T. Mateo-Sánchez M.C. Garcia-Viñas J.I. Marchamalo M. Mercier A. y Gastón A. The role of remote sensing data in habitat suitability and connectivity modeling: insights from the cantabrian brown bear. MDPI, 2021. https://doi.org/10.3390/rs13061138

Clipboard Icon
Recuperado: 18 Jan 2025 20:18:18

Metadatos

Información básica
Tipo de recurso Texto
Fecha de creación 02-12-2024
Fecha de última modificación 18-01-2025
Mostrar histórico de cambios
Identificador de los metadatos f97e0139-5c7e-5580-aabf-31134ddb87df
Idioma de los metadatos Español
Temáticas (NTI-RISP)
Categoría del conjunto de alto valor (HVD)
Categoría temática ISO 19115
URI de palabras clave
Información bibliográfica
Nombre del autor Cisneros-Araujo, P., Goicolea, T., Mateo-Sánchez, M.C., Garcia-Viñas, J.I., Marchamalo, M., Mercier, A. y Gastón, A.
Nombre del editor MDPI
Identificador alternativo DOI: 10.3390/rs13061138
Identificador del autor
Email del autor
Web del autor
Procedencia
Declaración de linaje
Perfil de Metadatos
Notas sobre la versión
Versión